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Penetration of high-speed targets, such as missiles or satellites, involves a glancing 
impact resulting from the velocities of the target and the projectile not necessarily 
being parallel to one another. Glancing is different from oblique impact in that here 
the target is in lateral motion relative to the projectile (at speeds that may be 
comparable). 

The effect of the transverse motion of the target on the penetration performance 
is analysed by means of a hydrodynamic model. As is usually done, both the 
projectile and target materials are taken to behave as ideal fluids, owing to the large 
stresses obtained upon impact. A complete description of the flow field is obtained for 
the planar case, making use of a transformation to the hodograph plane. Owing to 
the lack of symmetry, the solution is obtained indirectly from the known solution for 
asymmetrically impinging jets, obtaining a determinate solution by a limit process 
where the jet representing the target fluid becomes infinitely wide. 

The variations of the rate of penetration and the streamline pattern with the 
respective ratios of target to projectile speeds and densities are studied. It is found 
that the relative lateral motion of the target causes a decrease in the rate of 
penetration (in comparison to  normal impact). The analysis is utilized to  obtain an 
estimate for the total depth of penetration (relative to  the projectile width). 
Comparison with experimental data of yawed impact available in the open literature 
shows good agreement with the theoretical predictions when the latter are modified 
to account for the deceleration of a finite-length projectile. 

1. Introduction 
Glancing impact occurs when the target has a lateral velocity relative to the 

approaching projectile. Consequently their relative velocity is not parallel to the axis 
of the latter. (Thus ‘glancing’ differs from ‘oblique’ impact which has to  do with 
relative direction of the projectile axis and the surface of the target.) See figure 1. 

Glancing impact occurs in a number of practical penetration modes. Bless et al. 
(1978) conducted experiments on this kind of impact for yawed kinetic energy 
projectiles upon armour plates. In  recent years the subject has attracted considerable 
interest as a result of the application of ‘ overflying top attack ’ mode where a shaped- 
charge warhead is inclined relative to the axis of the carrying missile, so as to  enable 
a direct hit on a roof of a tank during overflight. Experimental data on the 
performance of such transverse shaped-charge jets were published by Golesworthy 
(1983) and Held (1984). Theoretical treatment of the problem (Golesworthy & 
Townsend 1984; Held & Fischer 1986) was, however, limited to a purely kinematic 
calculation of the transverse deviation of the jet particles (relative to the point of 
impact of the front tip of the jet) combined with semi-empirical relations for normal 
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FIGURE 1 (a ,  b, c).  Description of normal, glancing and oblique impacts respectively. and V; 
are, respectively, the projectile and target speeds. 

(‘direct ’) impact. Finally, the problem is particularly important in the context of the 
inflight interception of missiles and satellites. 

In the present study we analyse the effect of lateral target velocity on the 
penetration process by means of the hydrodynamic theory of impact and penetration. 
This was initially developed during World War 11, and reported in Birkhoff et al. 
(1948) and Pack & Evans (1951). It is based on the fact that  the pressures created 
during high-velocity impact greatly exceed the yield strengths of the materials 
involved, these then essentially behaving like ideal liquids. One thus neglects 
strength and viscosity relative to inertia effects. The penetration process well after 
the initial impact (when the front tip of the jet is taken to have penetrated a t  least 
several jet widths from the original surface of the target) can be approximately 
modelled as the quasi-steady motion of a high-velocity ideal fluid jet into an 
unbounded body of a quiescent fluid, both incompressible. 

The model above describes the major part of the penetration process following the 
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impact of a ‘long’ projectile upon a ‘thick’ target (both relative to the projectile 
width) excluding the very beginning and the very end. The initial impact (Ravid, 
Bodner & Holcman 1987) produces shock waves that travel into both the target and 
the jet, raising the stresses well beyond the plastic limit. Hence, the present 
incompressible model is a useful approximation after these waves have travelled far 
enough (cf. Tate 1967, 1986). Plastic and spalling effects may become significant 
towards the end of the process owing to deceleration of the projectile or when the 
target is breached, respectively. 

Making use of the ‘free streamline’ theory in conjunction with conformal mapping 
onto the hodograph plane (Milne-Thomson 1968, Ch. XI), Birkhoff & Caywood 
( 1949) analysed the corresponding two-dimensional flow field. This solution was later 
extended by Hopkins & Robertson (1967) by means of the ‘notched hodograph’ 
which allowed for velocity variations along the free streamlines. A ‘crater’ of finite 
width was thereby obtained. 

All the above applications of the hydrodynamic theory were limited to the case of 
normal impact, where the direction of relative motion coincides with the jet axis. In 
the next section this method is extended to the asymmetrical case of glancing 
impact. Owing to  the lack of symmetry, this extension is achieved indirectly, i.e. 
starting from the known solution for asymmetrically impinging finite fluid jets and 
applying an appropriate limit process whereby the width of the jet representing the 
target tends to infinity. The results of the analysis are then utilized in $3  to estimate 
the total depth of penetration. Following Tate (1967) a modification of the 
theoretical predictions to account approximately for the deceleration of a finite 
projectile is compared to the data of Bless et al. (1978) obtained in reverse-impact 
experiments with yawed rods. Finally, $4 summarizes the main results and discusses 
their applicability. 

2. Analysis 
Applying the hydrodynamic approach outlined above, glancing impact is modelled 

here by a projectile jet which moves with a (vertical) velocity 5 towards the 
unbounded target fluid which moves transversely with the (horizontal) velocity V,, 
see figure 2(a) .  Following Birkhoff et al. (1948), we seek fo render the problem time- 
independent via a Galilean transformation to a frame of reference attached to the 
(moving) interface dividing the jet and target fluids. To this end we superpose an 
appropriate constant vertical velocity (of magnitude W ) ,  parallel to the jet axis. In  
the new frame of reference the jet and target streams appear to be advancing from 
infinity with the respective undisturbed speeds Uj and U, (figure 2 b ) .  From the 
equilibrium condition a t  the prospective stagnation point (cf. Milne-Thomson 1968, 
p. 299) one obtains via Bernoulli’s equation 

where pt and pj are, respectively, the target and jet densities. Consequently W 
satisfies the equation 

(cf. figure 2b). Assuming for the time being equal densities (a restriction which is 
relaxed later) one obtains 

(1 b)  P~(T  + w) = P j ( 5 -  W)’ 

w = $ y ( l - K Z ) ,  ITj = u,= U = i F ( l + k . 2 )  (2% b)  

where K =  V/y. (3) 
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FIQURE 2. Schematic definition of speeds and directions (a) in a stationary frame of reference 
and ( b )  in a frame moving vertically downward with the constant speed W .  

The velocity of the stagnation point 0 relative to a stationary frame of reference, is 
denoted by Wand is equal to the rate of penetration, According to (2a) ,  we note, as 
expected, that  the transverse motion of the target reduces the rate of penetration 
from the classical value of Birkhoff et al. (1948). This reduction is because 
successive jet particles interact with different portions of the target unlike normal 
impact, where they all act to  deepen the same crater. The rate of penetration 
becomes smaller with increasing lateral target velocity, until it vanishes for V, = Vj. 
(Even then some damage will occur on the surface of the target - ‘trenching ’ - Bless 
et al. (1978), but this is outside the scope of the present model.) 

In the plane two-dimensional case the solution will tend to the normal-impact 
solution of Birkhoff & Caywood (1949) as V, -f 0. We therefore describe the flow field 
in the general (V, $; 0) case as in figure 3. Figure 3 ( a )  depicts the transformed 
physical, z = x+iy, plane. The penetrator jet and the target are approaching the 
stagnation point 0 ( z  = 0) with undisturbed velocities -iU and UePia, respectively, 
where 

(a’ is defined in figure 2 b ) .  The value ~ = 0 is assigned to the dividing streamline 
passing through 0. Along the free streamlines AC and AD, ~ = Ulll and ~ = - U,,, 
respectively, where l,, and l,, are the respective asymptotic distances between the 
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FIGURE 3. Schematic description of the flow field. (a) Physical z = z+ iy plane. 
(b)  Hodograph o = (u - iv)/U plane. 

free streamlines and the dividing streamline. Since the target fluid is unbounded, we 
impose the ‘far-field’ condition that the velocities at  infinity within the domain of 
the target (and hence within the deflected jet too) be equal to the undisturbed target 
velocity. Thus the velocities at  C and D are also Ue-Ia (as in B). 

The fluid domain is mapped in the hodograph plane of the normalized conjugate 
velocity, w = (u-iv)/U, into the interior of the unit circle, figure 3 ( b ) .  The free 
streamlines AC and AD appear on the circumference, and the points at infinity of the 
target and the deflected jet (B, C and D) coincide there. 

The solution of the classical problem of normal impact (by means of the mapping 
of half the fluid domain in both the physical 2-, and the hodograph w-planes onto the 
upper half of an auxiliary plane) requires the existence of a symmetry line which is 
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FIGURE 4. Impingement of finite jets. 

a streamline (cf. figure 5a) .  The lateral motion of the target breaks this symmetry, 
hence the shape of the stagnation streamline (nor, in fact, any other streamline) is not 
given a priori in the present problem. Thus extension of the classical solution by 
means of an appropriate conformal transformation does not seem obvious. 

Our approach is based instead on the known solution for the impingement of finite 
jets (figure 4) and the application of a suitable limit process whereby the jet 
representing the target fluid becomes infinitely wide. The widths of the hpproaching 
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projectile and target jets are d, and d,, respectively, and their respective undisturbed 
velocities are - iUand Ue-ia. The velocities at infinity of the deflected portions of the 
fluid are Ue-'fl (at C) and Ue-'Y (at D). In addition to the free streamlines AC and AD 
(which have already appeared in figure 3) we now have the free streamlines BC and 
BD bounding the jet representing the target. Along the latter I) = - UZ,, and I) = 
U2,, respectively (Z,, and I,, are the analogues of I , ,  and I , ,  for the target). Here again 
the fluid domain is mapped onto the unit circle in the hodograph plane. 

Selecting d, as the characteristic lengthscale, we define the non-dimensional 
quantities 

(5a) 
d d 

I,, = dlLll, I , ,  = dlLzl, 4, = :L12, = 1L22, E 

where E is the ratio 
E = d,/d,. 

Applying the Schwarz formula (Milne-Thomson 1968, p. 2981, we express the 
potential as 

(The limits of integration are, in general, 0, and 8, + 27c, respectively, where 8, is an 
arbitrary constant. The specific choice 8, = i n  is a matter of convenience). 
Substitution of ~ ( 8 )  (cf. figure 4b) and the definitions (5a )  and (56) followed by 
quadratures lead to 

1 
-- xf(w) - L,,[ln ( I  + iw) - In (I  - w e-'Y)] + -L,,[ln (1 -we+) - ln (1 -we+)] 
Udl E 

1 
+-L,,[ln ( 1 - w e ~ ' " ) - 1 n ( 1 - w e ~ ' ~ ) ] + L 1 , [ 1 n ( 1 + i ~ ) - ~ n ( ~ - w e ~ ' ~ ) ] + ~ i C .  (7) 

E 

Equation (7) is supplemented by the following conditions : 
Conservation of mass yields 

L,, +L,, = 1 in the projectile 

and L,, +L,, = 1 within the target. 

The momentum balance parallel and perpendicular to the undisturbed target 
velocity results in 

(9) 

and (10) 

respectively, where p' and y' are defined by 

p' = a+p', y = a-y' 

respectively. Finally the constant of integration in (7) is 

since the dividing streamline has been assigned the value I) = 0. 

8 FLM 216 
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Equations (8)-( 10) and (12) provide altogether five equations for the six unknowns 
L,,, L,,, L,,, L,,, /3 and y ,  which is not surprising since the problem of asymmetrically 
impinging fluid jets is indeterminate (Milne-Thomson 1968, p. 302). However, here 
we are interested only in the limit of the solution when E + O .  In  this case it is 
expected that p', y'+O (cf. the paragraph following (4)). The asymptotic calculation 
(cf. Appendix A) shows indeed that p' and y' are both O(&, and leads to 

iw e-ia e-ia 

cos a + 
1 - (1 - w e+), Ud, A In (1 + iw)-ln (1 --we+)- e-ia 

As discussed in the Appendix, the limit process is singular, yet the latter result is 
valid throughout the finite physical plane. 

Substituting (13) into the identity 

one obtains after quadrature 

e-2ia [ - 3 + 2 sin a + (2 - sin a) we-ia] 
(1 - w e-ia)2 

+ 
where the integration constant has been selected so as to locate the stagnation point 
w = 0 a t  the origin z = 0. (The need for the foregoing limit process becomes clear 
when one attempts a 'direct' solution based on the description of the flow field in 
figure 3 instead of starting as above from the picture of finite jets (figure 4). This leads 
to an expression off(w) in which the non-logarithmic terms, i.e. the last two terms 
on the right-hand side of (13) are missing. Substitution into (14) then yields a 
logarithmic singularity at w = 0 in z(w) ,  which contradicts the assumed flow pattern 
(cf. figure 3). This physically unacceptable result is a consequence of an oversimplified 
description of the vicinity, in the hodograph plane, of the point B, C, D, one which 
does not satisfy conservation of momentum.) 

It has been assumed in the formulakion of the problem that the case of normal 
impact corresponds to the limit K + O .  This limit is represented by u = $A (cf. (4)). 
Substitution of this value into (13) and (15) yields 

and 1 z 2 4  3 - 2iw) 
- = 1 [ - i In (1 + iw) + i ln (1 -iw) + 
d* ( 1 - iw), 

respectively. A reversal of the direction of the streamlines and a ;A rotation of the 
frame of reference readily demonstrate that  (16) and (17) revert to the results of 
Birkhoff & Caywood (1949, their equations (3)-(5)) as well as those of Hopkins & 
Robertson (1967, their equations (5) and (7) in the limit K +  1). 

A complete description of the penetration process is provided by the streamline 
pattern (in particular the dividing streamline and the free streamlines) in conjunction 
with the rate of penetration, W .  Figures 5(a) -5(d)  describe the dependence of this 
streamline pattern upon a (or the velocity ratio K ,  equation (4)) by depicting it in 



Hydrodynamic theory of glancing impact 22 1 

(4 (b) 

- iv/ (I 

t A  

FIGURE 5(a,6).  For caption see next page. 

both the physical and hodograph planes for a/n = %, g ,  4 and %, i.e. velocity ratios of 
K = 0, 0.132, 0.268, 0.577, respectively. (The flow fields corresponding to  a: = 
3x12 +a’ are obtainable as mirror images of each other, consequently the variation 
is considered only for a < 3 7 ~ / 2 . )  The picture becomes increasingly asymmetric with 
decreasing values of a. 

As a consequence of the ‘far-field’ conditions in the present problem, the 
‘windward’ portion of the deflected fluid inevitably intersects the oncoming jet for 
any a < 3n/2. (This is particularly evident in figure 5 d . )  In  the foregoing solution 
these crossing streams do not interfere with each other, since they take place on 
different sheets of a Riemann surface. (A similar phenomenon was discussed by 
Lighthill 1979.) Potential implications of this intersection on the applications of this 
model will be discussed in the next section. 

8-2 
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FIQURE 5 .  Variation of flow pattern with a :  (a )  aln: = i, ( b )  E, (c) i, (d )  $. (The numbers indicate 

the corresponding values of the non-dimensional stream function, @/Udl.)  

2.1. Unequal densities 

We now extend the foregoing analysis to the case when the respective densities of the 
jet and the target, pj and pt, are not necessarily equal. Consider first the rate of 
penetration, W ,  which satisfies 

( l - A )  - -2 -+( l - -hK2)  = 0 
(J2 ; 

(which is (16) recast in non-dimensional form), where 

= Pt1P.i. 
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Considering the respective limits h + 1 and K +  0 we see that the solution that is 
compatible with the present problem is 

(20) W = ( 1  -A)-’ (1  - hi[l -k ( 1  -h) K 2 ] i }  6. 
Thus W can be readily verified as decreasing monotonically with increasing h and K 

from the value W = for h = 0 (which corresponds to the unopposed motion of the 
jet into vacuum). 

(For h > 1 and K > K’ = ( A  - l)-i, (18) possesses no real solutions, because there 
exists no inertial frame of reference where the flow appears steady. This, however, 
does not restrict the applicability of the present analysis, because W is already 
negative (no penetration) for K = K~ = ~ t . )  

The solution of the kinematic problem, (13) and (15), and hence the streamline 
pattern are unaffected by the variation of A ,  but the fluid velocities are now 
normalized by 

in the jet domain, whereas in the target domain they are normalized by 

u. J 1  = - w = ht(l -h)-’{[I + (1 -h)  K 2 ] i - h t }  6 

ut = h-;Uj = (1 -h)-’{[I + (1  -h) K 2 ] i - h i }  5. 

q. = hiq 

(21 a )  

(21 b)  

In  particular the dividing streamline becomes a ‘slip line ’ across which the respective 
fluid speeds in the jet and target, qj and qt, are related by 

t’ 

This assures, via Bernoulli’s equation, the continuity of pressures across the dividing 
streamline. The angle a’ is now 

instead of ( 4 b ) .  Equation ( 4 a )  relating a and a’ remains the same. Thus while the 
dependence of the flow pattern upon a (figures 5 (a)-5 ( d ) )  is unchanged, its variation 
with K’ is modified by variations in A. 

3. Depth of penetration 
Experimental data (Golesworthy 1983 ; Held 1984) regarding glancing impact of 

shaped-charge jets indicate that, owing to the transverse motion of the target, the jet 
may eventually contact the side of the crater. When this occurs the rest of the jet is 
used up through interaction with the wall or causes superficial damage on the surface 
of the target (trenching), but does not deepen the crater any further (Held & Fischer 
1986). 

We thus distinguish between two cases: I the entire length of the jet contributes 
to penetration; I1 the depth of penetration is limited by the aforementioned 
interaction with the crater wall. 

Define d as the vertical (parallel to the undisturbed jet axis) coordinate of the 
point where the ‘windward’ branch of the free streamline crosses itself (see figure 
5 d ) .  Our estimate of the total penetration depth relates the transition from case I to 
case I1 to d : since the interaction with the wall of the crater will not take place much 
above the original level of the free surface of the target, we assume that case I1 occurs 
when the projectile has penetrated a distance d and the remaining segment of the jet 
at  that instant is longer than A .  



224 I .  Frankel and D .  Weihs 

I 

FIQURE 6. Variation of log,,d, the logarithm of the vertical coordinate of the point where the 
‘windward’ branch of the free streamline crosses itself, with the glancing angle a (or with the speed 
ratio K when the density ratio is A = 1). 

Thus the total penetration is here estimated as 

where L is the aspect ratio (length to width) of the projectile. The terms ( W/Uj) L and 
( W / U j )  A are obtained by the product of the penetration rate W and the duration of 
the interaction, L/Uj and A / U j ,  respectively, until the corresponding jet segment is 
used up. From ( 2 a ,  b ) ,  (20)  and (21a)  

‘ 1 - K 2  

1 + K 2  
for h = 1 

Figure 6 displays the variation of A with a in the interval 3x14 < a < 3x12 on a 
logarithmic scale (also shown are the corresponding values of K for h = 1). A grows 
monotonically with a and becomes infinitely large when a + 3x12 (in which case there 
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FIQURE 7. Variation of 8the total (non-dimensional) penetration depth (perpendicular to the target 
surface) with the angle a‘ for rods of aspect ratio L = 11.7. ---.-, equation (23) ; -, the modified 
theoretical estimate which incorporates the deceleration of the rods. Also shown are the 
experimental data of Bless et al. (1978) for rods of diameter 1.47 mm (O), 2.47 mm (A) and 
3.68 mm (0). The horizontal broken lines mark the respective non-dimensional penetration depths 
corresponding to perforations of the 12.7 mm target plates, and the values of a’ below which they 
were observed. 

is no intersection). When a x 1 . 2 ~  (corresponding to K x 0.510 for h = l),  A x 3. For 
smaller values of a the total depth of penetration becomes vanishingly small. 
Furthermore, it becomes questionable whether the present quasi-steady view is still 
a justifiable approximation. Hence the range of engineering applicability of the 
present analysis is estimated as 1.212 < a < 1 . 5 ~ .  

The predictions based on the present analysis are compared in the following with 
the data of Bless et al. (1978). These were obtained in ‘reverse-impact’ experiments. 
Steel (R. H. A.) target plates were launched perpendicularly to their respective 
planes at 17, x 2.15 km/s against fixed steel (SAE 4340) rods of aspect ratio 11.7 
whose axes were inclined at  a yaw angle 0 to the velocity of the plates. This yaw angle 
is related to the glancing speed ratio K via 

tan0 = K (25) 

hence (for h = 1) a’ = 28. (26) 

Figure 7 presents the variation of the non-dimensional depth of penetration 
perpendicular to the surface of the target, 8( = S cos 0) with a’ for rods of aspect ratio 
L = 11.7. The dot-dash line corresponds to the theoretical estimate, (23). The 
transition from case I to case I1 takes place at  a‘ = 41.5’. Equation (23) is expected 
to overestimate the total depth of penetration because: (i) It is based in part on a 
two-dimensional model whereas the experimental configuration of Bless et al. (1978) 
is three-dimensional. (ii) In finite-length rods, the rear portion of the projectile is 
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decelerated owing to the axial pressure distribution, thus reducing its contribution 
to penetration. 

The former effect is discussed in the next section. In  the following, the theoretical 
estimate is modified to account approximately for the latter effect by calculating the 
deceleration of the projectile during the penetration process. This calculation is based 
on the modified hydrodynamic theory (Eichelberger 1956 ; Tate 1967) which assumes 
that the projectile and target materials flow hydrodynamically only when certain 
pressures, Yp and R,, respectively, are exceeded. Following Tate (1967), the equation 
of motion is written for the rear (rigid) portion of the rod. This is then combined with 
the kinematic relation between the respective projectile and penetration speeds and 
the rate of consumption of the rod, and a 'modified Bernoulli's equation' which 
incorporates the constants Yp and R,. Taking the values suggested by Tate (1967), i.e. 
the Hugoniot elastic limit (15 kbar for SAE4340) and the ratio RJY, = 3.5 (for 
steel-steel impact) we obtain after some algebraic manipulation the results 
represented by the full line in figure 7. (This calculation is not inconsistent with the 
quasi-steady model assumed here. The results (Tate 1967) show that almost all of the 
penetration is achieved before any substantial deceleration of the projectile takes 
place.) It is interesting to note that, owing to the deceleration, the transition to case 
I1 occurs only a t  a' z 54' and even then the difference between the two cases remains 
small. 

Along with the foregoing theoretical predictions, figure 7 presents the experimental 
data of Bless et al. (1978) for rods of aspect ratio L = 11.7 and diameters of 1.47 mm 
(squares), 2.47 mm (triangles) and 3.68 mm (circles) (the empirical correlations 
included in the original reference have been omitted here). When the range of higher 
values of a' ( > - 0.37~) is excluded (cf. the description of figure 6), it seems as if the 
modified theoretical prediction (the full line) is still an overestimate. One should 
note, however, that the experimental data presented result in a somewhat biased 
picture because they contain only the cases of non-perforations. Since the 
experiments were performed with target plates whose maximal thickness was 
12.7 mm, it  was impossible to measure penetration depth which exceeded the values 
S= 8.64, 5.14 and 3.45 for the three respective rod diameters. According to 
additional data published by Bless et al. (19781, perforations of the 12.7 mm target 
plates were observed for yaw angles corresponding to a' of less than 16', 40" and 60°, 
respectively. Had thicker target plates been used in the experiments, additional data 
points would have appeared above the three respective horizontal broken lines. The 
modified theoretical estimate is thus seen to yield a good agreement with the 
available experimental data. 

4. Concluding remarks 
The hydrodynamic theory of impact and penetration has been extended to cases 

of glancing impact. Retaining the usual dynamic assumptions of the hydrodynamic 
theory, a quasi-steady description is obtained via a transformation to a frame of 
reference that moves with the penetration velocity. The penetration velocity W is 
determined from the dynamic condition on the dividing surface between the 
projectile and target materials. The resulting expressions (2a) and (20) show that the 
lateral motion of the target reduces the rate of penetration. An important feature of 
these results is their validity in three-dimensional geometries. 

A complete description of the flow field is obtained for planar two-dimensional 
flows through application of the hodograph transformation. Owing to the lack of 
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symmetry in glancing situation, we start with the known solution for asymmetrically 
impinging fluid jets and the problem is scaled with respect to the projectile width. We 
then apply a limit process whereby the width of the jet representing the target tends 
to  infinity. This, in conjunction with the appropriate ‘ far-field ’ conditions, results in 
a unique limit solution in spite of the well-known indeterminacy of the original 
problem. The solution is valid throughout the finite physical plane although the limit 
process is singular. 

The analysis is generalized to  cases where the density ratio is h $. 1. The kinematic 
problem of determining the complex potential, f, and the physical coordinate, 2 ,  as 
functions of the conjugate velocity w is unaffected by A, hence the expressions for f ( w )  
and z(w) ,  (13) and (15) respectively, remain valid. Consequently, for a given value of 
glancing angle a the streamline pattern remains the same. The relation between a 
and the speed ratio K is, however, modified by h and the fluid velocities are now 
normalized relative to different speeds in the projectile and target domains, U, and 
Uj, (21 a )  and (21 b )  respectively. I n  particular the dividing streamline becomes a slip 
line thus assuring equality of pressures across it. 

The results of the analysis are used to  predict the depth of penetration obtained 
for finite projectiles. A distinction is made between the two cases : I the whole length 
of the rod contributes to the penetration; I1 the total depth is limited by the 
interaction with the wall of the crater (resulting from the lateral target motion). 

A by-product of this finite-penetrator calculation is a lower bound (a  > - 1.27~) on 
the values of a for which the present quasi-steady model is expected to apply. The 
theoretical prediction, (23), is expected to overestimate the depth of penetration 
because of the finite length of the projectile and the three-dimensionality of the 
experimental configuration of Bless et al. (1978). The former effect has been treated 
approximately through a modified calculation following Tate (1967) which 
incorporated the deceleration of the projectile. While this modification seems 
sufficient to yield a good agreement with the experimental data (figure 7), the role of 
three-dimensionality nevertheless deserves some further comment. 

It is important to note that our estimate corresponding to case I is unaffected by 
three-dimensionality, because, as mentioned above, W is not. On the other hand, a 
three-dimensional jet will create a narrower crater within the target which will result 
in a lower value of A for a given a. This will lower the curve corresponding to case 
I1 in figure 7 and will shift the transition from case I to case I1 to a lower value of 
a‘. A quantitative estimate of these trends requires a fully three-dimensional 
numerical solution, which constitutes a possible extension to the present work. For 
the present combination of parameters corresponding to  the yawed-impact 
experiments of Bless et al. (1978), case I, however, covers most of the relevant range 
of a’ which in turn may explain the good agreement observed in figure 7 between the 
modified theoretical predictions and the (three-dimensional) experimental results. 

Appendix. The asymptotic result, equation (13) 
Algebraic manipulation of (8)-( 12) yields the equation 

sin p’ + sin y‘ + E cos a(cos y’ - cos p’) + E sin a(sin p’ +sin y’) = (1  + E )  sin (p’ + 7’) ( A  1 )  

from which it follows that 

p’ x p o E ~ + o ( s ) ,  y’ x yo4+O(E) ,  (A 2% b)  

where ,&yo = 2(1-sina). (A 2c) 
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(From (9) and (10) in conjunction with the fact that Lll, LIB, L,, and L,, are all 
0(1), one readily concludes that p' and y' being both O(& for E + O  is the only 
consistent choice.) We then proceed by expanding the terms In (1 -we-'Y) and 
In (1 - w e-'p) in power series of (1 - eiY') and (1 - eciP?'), respectively. When these 
are substituted into (7) we obtain 

(A 3)  

where the zeroth- and first-order terms have been expressed by making use of the 
conservation of mass, (S), and conservation of momentum, (9) and (lo), respectively. 
In  order to express the higher-order terms one needs to make use of (A 2).  A tedious 
calculation then leads to 

The indeterminateness of the problem allows for some freedom in the choice of the 
specific limit process. Assuming p' = y' when B + O ,  the error terms in (A 3a, b )  are 
both reduced to O($) and the odd error terms containing the fractional powers of 6 
are removed from the right-hand side of (A 4). There is no way to eliminate the rest 
of the (even) error terms and thus the expansion (A 4) is non-uniform a t  the point B, 
w = eia, in the hodograph plane (see figure 4). The asymptotic result, (13), is thus 
valid outside the neighbourhood 

w - eia w ~ ( d )  (A 5 )  

of the point B. (In fact )w-eial €4 is sufficient to assure the validity of the 
asymptotic expansion (A 4). The stronger requirement embodied in (A 5 )  is necessary 
to guarantee the actual vanishing of the error terms.) When (A 5 )  is substituted into 
(15) we see that the non-uniformity is confined to the vicinity 

z x o(E-4) (A 6) 

of the point of infinity on the sheet which contains the target and deflected jet fluid 
on the Riemann surface which represents the solution. We thus conclude that (13) 
and (15) resulting from the limit process 

E + O ,  w =# eia (fixed) (A 7 )  

are valid throughout the finite physical plane. 
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The singularity in the limit process is because for all e > 0 (however small) the 
original problem contains an additional couple of free streamlines (which disappear 
only for e = 0). Thus the non-uniformity of the expansion (A 4) results from its 
inability to satisfy the suitable boundary conditions on these additional free 
streamlines. As e -+ 0 these streamlines become farther removed away from the 
domain of interest in the physical plane. Furthermore, as a consequence of the far- 
field conditions imposed in the analysis, the fluid velocity when approaching the 
target infinity deviates only slightly from the unperturbed velocity, Ueia. Thus when 
e + 0 the streamlines near the target infinity become in fact ' almost free ' streamlines. 
Therefore the small error introduced here in satisfying the conditions a t  infinity has 
only local influence on the solution and does not affect the validity of (13) and (15). 
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